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This completely computer-based module’s purpose is to introduce students to bioinformatics
resources. We present an easy-to-adopt module that weaves together several important bioin-
formatic tools so students can grasp how these tools are used in answering research questions.
Students integrate information gathered from websites dealing with anatomy (Mouse Brain
Library), quantitative trait locus analysis (WebQTL from GeneNetwork), bioinformatics and gene
expression analyses (University of California, Santa Cruz Genome Browser, National Center for
Biotechnology Information’s Entrez Gene, and the Allen Brain Atlas), and information resources
(PubMed). Instructors can use these various websites in concert to teach genetics from the
phenotypic level to the molecular level, aspects of neuroanatomy and histology, statistics,
quantitative trait locus analysis, and molecular biology (including in situ hybridization and
microarray analysis), and to introduce bioinformatic resources. Students use these resources to
discover 1) the region(s) of chromosome(s) influencing the phenotypic trait, 2) a list of candidate
genes—narrowed by expression data, 3) the in situ pattern of a given gene in the region of interest,
4) the nucleotide sequence of the candidate gene, and 5) articles describing the gene. Teaching
materials such as a detailed student/instructor’s manual, PowerPoints, sample exams, and links to
free Web resources can be found at http://mdcune.psych.ucla.edu/modules/bioinformatics.

INTRODUCTION

Gregor Mendel’s work was nearly lost (Maloney, 1996) and
was only rediscovered well after his death in 1884. People
with vision have created bioinformatic tools to prevent such
a tragedy in our day. Students need experience with these
tools to be well-trained scientists and even consumers of
data; yet, undergraduate students are afforded little oppor-
tunity to learn about these resources that could become
important tools in their careers. This article describes an
easy-to-adopt module that weaves together several impor-
tant bioinformatic tools so students can grasp the depth and
power that these tools provide in formulating and answer-
ing research questions. Moreover, all of the resources used
in this module are available for free on the Internet.

The core of this module is a quantitative trait locus
(QTL) analysis, which has become an exciting topic in
biology because it provides a means of linking variations
in a quantitative phenotype to chromosomal loci. Further-
more, because the genotypes of so many organisms have
been sequenced and published, QTL analyses can suggest
candidate genes that could be involved in shaping the
phenotype. QTL analyses are currently being applied to
humans, animals, and even plants to determine the locus
of genetically determined or influenced morphological
and behavioral traits. Among the growing list of traits are
olfactory bulb size (Williams et al., 2001), cerebellum size
(Airey et al., 2002), cortex size (Beatty and Laughlin, 2006),
alcoholism (Grisel, 2000; Bergen et al., 2003), Alzheimer’s
disease proteins (Ryman et al., 2008), attention-deficit hy-
peractivity disorder (Doyle et al., 2008), pain susceptibility
(Nissenbaum et al., 2008), IQ (Butcher et al., 2008), obesity
(Casellas et al., 2009), and dyslexia (Deffenbacher et al.,
2004). In short, almost any morphological, physiological,
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or behavioral trait that could have at least some genetic
basis can be examined by QTL analysis.

Besides experience with QTL analysis, this module also
provides students with an integrated experience that goes
from measuring phenotype through identifying candidate
genes that are expressed in the tissue and that may influence
the phenotype. As students journey through this module,
they use a succession of bioinformatic tools, including the
Mouse Brain Library; WebQTL from GeneNetwork; the Uni-
versity of California, Santa Cruz (UCSC) Genome Browser;
National Center for Biotechnology Information (NCBI) En-
trez Gene; the Allen Brain Atlas; and PubMed.

METHODS
Below, we provide a synopsis of the steps used in teaching this
module. A more complete description is available in the student/
instructor’s manual and protocol PDFs that can be downloaded for
free from our website at http://mdcune.psych.ucla.edu/modules/
bioinformatics.

Quantifying the Phenotype
We use the Mouse Brain Library (Rosen et al., 2000; The Mouse Brain
Library, 2005a,b) as a resource for our phenotype. This resource
provides images of sectioned mouse brains from different recombi-
nant inbred strains as well as pertinent metadata about individual
animals, such as age, body weight, sex, and fresh brain weight. The
set of images that we use come from brains that have been sectioned
in the horizontal plane (Figure 1) and are Nissl stained, which
defines cell bodies. The specific set of images that we use came from
various BXD recombinant inbred strains (RISs) along with F0 C57BL/6
mice (B mice) and DBA/2J mice (D mice). Each BXD RIS has a unique
recombination of the DNA from the F0 B and D mice on each chro-
mosome. Good descriptions of the derivation of recombinant inbred
strains can be found in Grisel (2000), Silver (2008), and at the GeneNet-
work website (www.genenetwork.org). Also, each of these RISs have
been genotyped, and informative markers have been mapped denot-
ing whether the DNA was from the F0 B or D strain. Thus, RISs can be
sorted as to whether they have the B or D marker at a given point on
a given chromosome. Ultimately, differences in the phenotype among
RISs can be correlated with differences in their genotypes. A good

discussion of markers and chromosome mapping can be found in
Silver’s free online book on mouse genetics (Silver, 2008).

Selection and Quantification of the Phenotype
Although any phenotypic brain trait could be selected, we selected the
olfactory bulb for ease and reliability of quantification with less inter-
observer variability than other brain structures. Also, a published work
on QTL analysis of mouse olfactory bulbs is available for comparison
(Williams et al., 2001).

The specific set of images from the Mouse Brain Library that we
use can be downloaded from our website at http://mdcune.psych.
ucla.edu/modules/bioinformatics, along with a spreadsheet that con-
tains the pertinent metadata (by kind permission of Dr. Robert W.
Williams, Center for Genomics and Bioinformatics, University of
Tennessee, purveyor of the Molecular Biology Laboratory).

To quantify the olfactory bulb as well as obtain an estimate of the
volume of the whole brain, students download Image J (National
Institutes of Health, 1997), a free software package that allows
analyses of digital images. In brief, the entire olfactory bulb is traced
in every section in which it occurs, and the volume is determined
from these data.

Correcting Variability
QTL analyses are sensitive to various sources of variability—not just
variability that is due to genotypic variation. Thus, a great deal of
emphasis in this module is spent on controlling sources of variabil-
ity that are not due to genotypic variation. Extraneous nongenotypic
variability can come from technical or environmental sources (Wil-
liams, 1998) and will result in more type II statistical errors (false
negatives) as long as it is not differentially distributed across strains.
Some sources of variability that this module addresses are technical
sources such as differential shrinkage of olfactory bulbs and inter-
observer variability, which we seek to minimize and correct (for
details, see student/instructor’s manual at http://mdcune.psych.
ucla.edu/modules/bioinformatics).

Another important source of variability is inter-subject charac-
teristics that could affect the phenotype apart from the genetic
influences acting directly on our region of interest (olfactory
bulbs). Brains from the Mouse Brain Library come from animals
of diverse ages, body sizes, and brain weights as well as both
sexes. To distill the variance uniquely due to genetic influences
on olfactory bulbs, these extraneous variables must be controlled
for statistically via multiple regression. This step provides an
excellent opportunity to teach simple and multiple regression as
tools for this purpose.

QTL Analysis by Using GeneNetwork
After removing extraneous variance, students then find an aver-
age of the residual variance for each recombinant inbred strain
and are ready to perform the QTL analysis, by using WebQTL
from GeneNetwork (Wang et al., 2003), a web-based resource
provided by GeneNetwork From the University of Tennessee
(2001). Again, QTL analysis relates the variation in the phenotype
(or residual phenotype) to loci on chromosomes that impact the
phenotype. See resources available at the GeneNetwork and
Grisel (2000) for an excellent description of QTL analysis.

GeneNetwork uses a specific interface in which the data from a
given trait can be entered, and a likelihood ratio statistic (LRS) is
calculated as a function of markers across the genome (for a good
discussion of the LRS, see Beatty and Laughlin, 2006). The LRS
will be high if there is a large discrepancy in the phenotype
between mice with the B versus D marker at a given chromo-
somal locus and low when the phenotypes are not discrepant.
Large LRS values suggest that a gene(s) at or near the markers
have a large impact on the phenotype (Figure 2).

In our example (Figure 2), students can see that they obtained a
peak LRS score on the distal end of chromosome 6 that exceeded the

Figure 1. Image of a BXD mouse 527B from the Mouse Brain
Library. This brain was sectioned in the horizontal plane at 30 �m,
every 10th section was mounted and stained with cresyl violet for
Nissl. Rostral is up.
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“suggested” criterion and approached the criterion for significance.
Figure 3 shows the same graph as Figure 2 but “zoomed-in” on the
peak so that only a part of chromosome 6 is displayed. On the top
of the graph, there is a track linking directly to the UCSC Genome
Browser.

Using the UCSC Genome Browser

The UCSC Genome Browser (Zweig et al., 2008, University of
California Santa Cruz Genome Project, 2009) is a “site [that]
contains the reference sequence and working draft assemblies for

Figure 2. Output from WebQTL in GeneNetwork using students’ data. This graph shows the likelihood ratio statistic (blue squiggly line)
as a function of megabases across all mouse chromosomes except for Y. The criterion for significance is indicated by the pink horizontal line
(genomewide p level—� level of 0.05), and the criterion for suggested is indicated by the gray horizontal line (genomewide p level of 0.67).

Figure 3. A “zoomed-in” section of chromosome 6 from the same data as displayed in Figure 2. This view shows the single nucleotide
polymorphism (SNP) track as well as the LRS as a function of marker. Furthermore, there is a clickable track that leads directly to the UCSC
Genome Browser for that particular portion of chromosome. The small colored boxes near the top of the figure represent individual genes
and are also hot-linked to further information about individual genes.
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a large collection of genomes.” The UCSC Genome Browser
provides a list of the known genes spatially arrayed in the
selected region of a given chromosome. In Figure 4, the list of
genes in the portion of chromosome 6 displayed in Figure 3 can
be seen. Students then have a list of candidate genes that may
influence the phenotype.

Students use the microarray data to refine the list of candidate
genes. By clicking on the names of genes, students can link to the
microarray data, which may include whether the gene is ex-
pressed in the olfactory bulb. These microarray data provide an
opportunity to discuss this cutting-edge technique (Figure 5). As
students identify genes that are expressed in the olfactory bulb,
we have them pursue further information about these genes
using other bioinformatic resources. The UCSC Genome Browser
has links to several other bioinformatic resources such as the
Allen Brain Atlas, NCBI Entrez Gene, and NCBI PubMed.

Using the Allen Brain Atlas
Once students have used the UCSC Genome Browser to identify a
gene that is highly expressed in the olfactory bulb, they are then
asked to click on the link to the Allen Brain Atlas (Lein et al., 2007;

Allen Institute for Brain Science, 2009). The Allen Brain Atlas is an
interactive, genome-wide image database of gene expression. In
other words, it is a database of in situ hybridization studies showing
the expression pattern of specific genes across brain regions (cf.
Ramos et al., 2007). The Allen Brain Atlas gives students the oppor-
tunity to learn about in situ hybridization as well as some experi-
ence with a brain atlas and neuroanatomy.

Specifically, we ask students to describe which olfactory bulb cell
layers express their particular gene of interest (Figure 6). Knowing
which cell layers express the gene could give clues about the ontogeny
of size differences among strains. Using the Allen Brain Atlas brings
the students full circle back to the tissue itself, this time armed with the
knowledge of a gene that could have affected the development of this
structure.

Using Entrez Gene
Once genes expressed in the olfactory bulb have been identified,
students can use a link from the UCSC Genome Browser to the
NCBI Entrez Gene resource (NCBI, 2009a). Using a link out of the
UCSC Genome Browser, we have students find the nucleotide se-
quence of the gene as well as the coding sequence (Figure 7). We use

Figure 4. Screenshot of the UCSC Genome Browser for the span of chromosome 6 corresponding to the peak displayed in Figures 2 and
3. (The red box near top displays the portion of chromosome 6 displayed.) Here, we can see list of the known genes in this region of
chromosome 6. Names are staggered with relation to where the gene would occur on the chromosome. These names are hot-linked to more
information such as the relative degree of expression. As one example, the gene Gabarapl1 (�-aminobutyric acid (A) receptor-associated
protein-like 1) is a gene on the distal end of chromosome 6 and is known to be expressed in the olfactory bulb.
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this as an opportunity to talk about introns and exons and why the
whole nucleotide sequence does not always coincide to the coding
sequence. Students learn that this information is useful for con-
structing in situ probes, quantitative polymerase chain reaction, or
antibodies to study the expression of this gene during development.

Using PubMed
When students locate a gene that is expressed in the olfactory bulb,
we ask students to find an article about that particular gene and
include a summary of the article in their write-up. The UCSC
Genome Browser provides a direct link to a listing of the relevant
articles in PubMed (NCBI, 2009b). Although some institutions may
have limited library resources, many journals now have content
online for free (listings can be found at the Open Directory
Project, 2002), and PubMed Central provides articles for free. We
ask students to find an article that describes something about
their gene, preferably relating to function, and write an abstract
of the article.

Implementing the Bioinformatics Module
Our module is laid out in 3 wk of lab instruction (3 h of lecture with
three 3-h lab periods). We have a large number of students (40–150)
in any given term, so we distribute the work accordingly and have
students serve as “checks” on each other’s accuracy by assigning
more than one student the same set of mice. Instructors with small

enrollments may need to adjust the workload per student or the
number of weeks devoted to this module to quantify the phenotype
in an adequate sample of mice (three to four) in each RIS.

Our students are either psychobiology or neuroscience juniors
and seniors. All students have had a course in statistics, a course in
genetics, and some exposure to neuroanatomy. Nonetheless, in
teaching this module, we review relevant statistics, genetics, and
neuroanatomy. Thus, prerequisite courses in statistics, neuroanat-
omy, or genetics are probably not necessary if the instructor pro-
vides relevant background on these topics.

Assessing the Effectiveness of This Module
To assess the effectiveness of this module, we administered a brief
quiz to measure gains not only in the content of this module but also
to tap understanding of statistics and logical reasoning before and
after exposure to the module (a pre- and posttest design). (The quiz
can be viewed in the Supplemental Material). In our analyses of the
quiz data, we threw out question 11 due to poor psychometric
properties and question 16 because of a wording error on the
original item—now fixed. Nonetheless, even when these items were
included the pattern of significant differences was maintained. Be-
cause repeated testing can sometimes raise scores by itself (Camp-
bell and Stanley, 1963; Trochim, 1986, 2006), we controlled for this
possibility by administering only the posttest in one of the two
samples of students.

Figure 5. Screenshot from UCSC Genome Browser showing the expression of the Gabarapl1 gene in olfactory bulb relative to other tissues.
Although the expression of Gabarapl1 is not extremely high, it might be of interest because it is a gene whose differential expression could
affect development.
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To assess student perspectives on their learning, we adminis-
tered a satisfaction survey based on a series of questions with
Likert-scaled response options. (Survey can be viewed in the
Supplemental Material). Students were also asked to respond to
the open-ended question, “Please describe the purpose of the
QTL (Bioinformatics) module from a learning standpoint in the
space below.” No further prompts were given and students were
not limited on the length of their response. No specific responses
were anticipated before data collection, so the coding of data was
loosely based on a grounded theory model that allowed student
perceptions to emerge without a preconceived hypothesis. None-
theless, given the nature of the module, there was a strong
likelihood that students would comment on content knowledge,
the relevance of statistics, and the usefulness of the technology.
All assessment measures had Institutional Review Board (IRB)
approval (UCLA IRB Exemption 07-211).

The participants consisted of 92 volunteers from UCLA’s fall 2008
Psychology 116, Psychobiology Lab (who received the pretest and
posttest) and 39 volunteers from winter 2009 Neuroscience 101L, Neu-
roscience Lab (who only received the posttest). Both courses have
students with very similar demographics and career ambitions. Re-
sponses to the Likert and qualitative items were pooled across both
samples of students.

RESULTS

We have taught this module for several terms and invariably
found evidence to support that it was an effective learning
exercise. When comparing posttest to pretest scores using a
paired t test, highly significant gains were found (t91 � 14.58,
p � 0.001; Figure 8). Students who only took the posttest still
showed gains relative to the previous term’s pretest (t129 �
10.61, p � 0.001—independent t test). Posttest scores did not
differ between students who had the pretest and those who did
not (t129 � 0.06, p � 0.95—independent t test; Figure 8). The
latter results establish that the gains that we observed are
probably due to the instructional module and not due to a
confounding factor such as “pretest sensitization” (Campbell
and Stanley, 1963; Trochim, 1986, 2006). Pretest scores did not
significantly correlate with grades on this unit (r84 � 0.164, p �
0.10), suggesting that differential student performance was not
due to some students being better prepared than others but rather
due to genuine gains in learning. Posttest scores did correlate with
the grades on the unit (r84 � 0.537, p � 0.001) when grades were

Figure 6. Screenshot from the Allen Brain Atlas. Large panel on right shows the in situ expression in a parasagittal section. Because
Gabarapl1 is widely expressed, most of the brain shows some expression of this gene but highly expressed (darker) regions include the
olfactory bulb, hippocampus, and one cortical layer. Large panel on the left is a plate from the corresponding atlas so that students can
identify the names of the cell layers in which this gene is expressed.
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determined by a multiple-choice and a short-answer exam but
not in the subsequent term when grades were only determined
by a short-answer exam (r34 � 0.087, p � 0.60).

On the satisfaction survey, students indicated that their
understanding of bioinformatics databases was enhanced, as
was their understanding of statistics, genetics, and molecu-
lar biology (Figure 9). (See Supplemental Material to view
the survey and to see responses question by question.)

Most responses to the open-ended question, “Please de-
scribe the purpose of the QTL (Bioinformatics) module from
a learning standpoint in the space below” described a com-
bination of learning objectives that factored down to six
main categories: 1) illustrative, 2) content knowledge, 3)
hands-on learning, 4) technology, 5) statistics, and 6) job
related. Responses coded as illustrative addressed the mod-
ule’s ability to disseminate knowledge without reference to
applying skills or analyzing content (responses included
terminology such as “exposed,” “showed,” “familiarize” or
“to see how”). Responses were coded as content knowledge
if the response acknowledged that learning the material was
at least one objective for using the QTL module. Responses
that addressed the module’s ability to provide an experience
to perform a learning-based task were coded as hands-on

learning (responses included phrases such as “doing the
activity,” “opportunity to participate,” “allows us to locate
and analyze,” or “hands-on approach”). The technology
category incorporated all responses that described learning
objectives related to using bioinformatic tools, learning
about a computer program or application, or developing
computer-related skills. The statistics category included any
responses that described the QTL module’s usefulness for
analyzing data. Finally, responses that claimed that learning
to use the QTL module helped prepare students for “work in
the field,” “real world experiments,” or “going into re-
search” were categorized as job related. Table 1 shows the
frequency of responses by category, along with cross-tab
data on four categories that had a higher rate of correlation:
hands-on learning and technology, and technology and job
related. Frequency data are also provided on student satis-
faction levels, even though the question did not require such
commentary. Most student comments were not value based
and simply stated the perceived purpose of the QTL mod-
ule; however, several students offered their opinion of the
module’s usefulness. Twenty-seven comments included
positive adjectives or phrases within the response, such as
“reinforced learning,” “makes learning easier,” “quick and

Figure 7. Screenshot from Entrez Gene displaying information about the coding sequence and the nucleotide sequence of the gene.
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efficient,” or “greatly enhanced [learning].” Five comments
included negative adjectives or phrases within the response,
such as “too fast-paced,” “confusing,” or “busy work.”

DISCUSSION

Both the content-based and attitudinal data indicate that this
module is a successful pedagogical unit. The dramatic dif-
ferences in the pretest versus the posttest results clearly
show that students made gains in knowledge acquisition, as
well as quantitative reasoning skills. The satisfaction survey
reflected students’ impression that their understanding of
genetics, statistics, and molecular biology was enhanced by

this module. In addition, student responses supported the
module’s ability to provide hands-on, learning-based tasks,
which fostered their ability to master technology, statistics, and
job- and career-related skills. Rightfully, no student mistook
the module for a simulation when addressing its purpose in
the open-ended question. Rather, students understood that
they used these digital tools just as professional investigators
would when conducting research. Finally, even though the
open-ended question did not specifically solicit value judg-
ments, students’ positive comments outweighed negative com-
ments by a ratio of 5:1.

With regard to the QTL data produced, our students
almost invariably found a peak on the distal end of chromo-
some 6 that reached the “suggested” level, but not quite the
significant level (Figure 2). We have replicated this finding
across several terms using different sets of students, and this
result is quite robust. Suggested peaks are worthy of further
pursuit because 1) QTL analysis is a tool for generating a list
of genes that might influence the phenotype and suggested

Figure 8. Mean (� standard error of mean) percentage correct on
pretest and posttest given in one academic term and a posttest alone
given in a subsequent term. Asterisks indicate significant differ-
ences as determined by a paired t test (for tests given in same term)
and an independent t test for tests given in different terms. N.S.,
difference not significant.

Table 1. Student perspectives on the pedagogical objectives of the
QTL module (a given student’s response may be coded into more
than one category)

Category Frequency

Purpose
Illustrative 67
Content knowledge 62
Hands-on learning 56
Technology 42
Statistics 26
Job related 26

Frequently correlated categories
Hands-on learning/technology 23
Technology/job related 15

Satisfaction
Positive comments 27
Negative comments 5

Figure 9. Percentage of respondents (n � 132)
as a function of scale points. Questions were
worded as follows. (A) Question 11: My under-
standing of bioinformatics databases was en-
hanced by actually doing the computer tasks
and examining their data. (B) Question 12: My
understanding of genetics was enhanced by the
QTL (Bioinformatics) module. (C) Question 13:
My understanding of statistics was enhanced
by the QTL (Bioinformatics) module. (D) Ques-
tion 15: I learned something about molecular
biology from the QTL (Bioinformatics) module.
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peaks probably should not be ignored; 2) the � level for
individual points is extremely stringent, so it is actually
difficult to find a significant peak; and 3) student data prob-
ably underestimate the true relationship between markers
and phenotype. When dealing with inexperienced students
taking measurements, error variance will probably be large,
thus diluting the relationship between markers and the phe-
notype. Furthermore, suggested relationships are reported
in the literature (Beatty and Laughlin, 2006; Doyle et al.,
2008; Ryman et al., 2008; but also see Williams, 1998). There-
fore, instructors should feel gratified when their students
can at least find peaks that reach the suggested criterion and
use these peaks to generate a list of genes that have a
putative impact on the phenotype.

Notably, our students did not faithfully replicate the find-
ings of Williams et al. (2001). Instead, our students found
fewer QTL peaks, and although our students did find a peak
on chromosome 6, it was shifted relative to Williams et al.
(2001). There are several possible reasons for these differ-
ences: 1) we used a slightly different set of strains—Williams
et al. (2001) used F1 mice and we did not; 2) in contrast to
Williams et al. (2001), we used volumes rather than weight;
3) for greater consistency among students, we operationally
define the olfactory bulb in a slightly different manner than
do Williams et al. (2001); 4) the map that we were using
probably had more markers than Williams et al. (2001) had,
so our peak may be more refined; and 5) the difference in the
number of QTL peaks was probably due to our students’
data having considerably more error variance than Williams
et al. (2001). Accordingly, the probability of making a type II
error (false negative) is higher with our student data, which
would mean fewer peaks. We used this as a lesson on what
random error variance does to data and why it pays to be
painstaking in science.

We used the olfactory bulb in this module because inex-
perienced students could reliably quantify the phenotype
and because there is a published work on this structure to
which students can compare their data. Nonetheless, many
other brain phenotypes could easily be substituted, such as
cerebellum, hippocampus, corpus callosum, and cortex size.
Published papers are available on each of these brain phe-
notypes (LeRoy et al., 1998; Airey et al., 2002; Peirce et al.,
2003; Beatty and Laughlin, 2006).

This module not only exposes students to QTL analysis,
which is a relatively new tool in molecular biology/genetics
but also exposes them to various bioinformatic tools weav-
ing them together into a cohesive, comprehensible unit.
Giving students experience with these tools sharpens their
understanding of the underlying biology and statistics that
were used to construct these bioinformatic tools. Our ulti-
mate goal goes beyond exposing students to these resources;
it also includes guiding students in solving a tractable prob-
lem by using this module as a vehicle to teach statistical
analyses, genetics, neuroanatomy, and molecular biology.
Although we do not use all of the many features available at
GeneNetwork, the UCSC Genome Browser (Zweig et al.,
2008), the Allen Brain Atlas (cf. Ramos et al., 2007), and NCBI
databases, we do manage to expose students to these enor-
mously valuable tools that are being used daily in research.
The fundamental analytical and research skills acquired in
this module would be valuable and applicable to any stu-
dent’s future career.

From the instructor’s point of view, this teaching module
is easy to implement. In the course of teaching this unit, we
identified and remedied many obstacles to make it a better
learning experience for both students and instructors. Notably,
we have vetted the set of images used from the Mouse Brain
Library so that they are the most complete ones available
for the RISs used. Also, we have discovered that even
when students have a background in statistics and genet-
ics, they still need a refresher tutorial. To assist faculty
with these tutorials, we have provided PowerPoint tuto-
rial slides that focus on statistics and other topics in this
module on our website at http://mdcune.psych.ucla.edu/
modules/bioinformatics (instructors must register as faculty
for access to PowerPoints). Because this module is inquiry
based, even though the outcome is fairly predictable, it does
vary—usually depending on the care with which the stu-
dents approach the material. Thus, it remains an interesting
unit to teach across several terms. Finally, as the bioinfor-
matic tools continue to improve, this module will provide
for more opportunities to explore different phenotypes.
Soon, high-resolution images ought to be available in the
Mouse Brain Library, allowing cell-by-cell resolution that
would open up a new realm to student exploration of the
relationship of brain phenotypes to genotypes.

Notably, all of the web-based resources used in the mod-
ule are available free to users. As a result, this module can be
used by any faculty with access to computers. We have
republished (with permission) the set of images from the
Mouse Brain Library as well as a spreadsheet that contains
the metadata about these mice to save instructors time in
implementing this module. These and other didactic mate-
rials, such as a detailed student/instructor’s manual, PDFs
of handouts, PowerPoint slides, and sample exams, are
available for free at our website at http://mdcune.psych.
ucla.edu/modules/bioinformatics.
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